PVSITES project

Dr. Maider Machado - Tecnalia

Acceleration of BIPV by international collaboration
IEA PVPS Task 15 at 32nd EU PVSEC - Munich
21st June 2016
General data

Building-integrated photovoltaic technologies and systems for large scale market deployment

<table>
<thead>
<tr>
<th>Acronym:</th>
<th>PVSITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Agreement:</td>
<td>691768</td>
</tr>
<tr>
<td>Work Programme:</td>
<td>H2020</td>
</tr>
<tr>
<td>Call:</td>
<td>H2020-LCE-2015-2</td>
</tr>
<tr>
<td>Topic:</td>
<td>LCE-03-2015</td>
</tr>
<tr>
<td>Subtopic:</td>
<td>PV integrated in the built environment</td>
</tr>
<tr>
<td>Funding EU:</td>
<td>5.47 M€</td>
</tr>
<tr>
<td>Funding Switzerland:</td>
<td>1.4 M€</td>
</tr>
<tr>
<td>Start date:</td>
<td>1st January 2016</td>
</tr>
<tr>
<td>End date:</td>
<td>30th June 2019</td>
</tr>
<tr>
<td>Coordinator:</td>
<td>Tecnalia R&I</td>
</tr>
<tr>
<td>Webpage:</td>
<td>www.pvsites.eu</td>
</tr>
<tr>
<td>Contact:</td>
<td>Dr. Maider Machado – maider.machado@tecnalia.com</td>
</tr>
</tbody>
</table>
Scope

- To pave the way towards a BIPV wider market uptake led by EU industry...

- ... By demonstrating in real buildings (TRL 5 to 6-7) an ambitious portfolio of BIPV solutions in terms of design and simulation, architectural integration, performance, cost-effectiveness, grid integration, energy management, LCA, training and awareness.
International collaboration

15 partners:

- Spain (4)
- France (3)
- Switzerland (2)
- Portugal (1)
- Germany (1)
- Italy (1)
- Netherlands (1)
- Belgium (1)
- UK (1)
International collaboration

<table>
<thead>
<tr>
<th>Coordinator</th>
<th>Grid interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-c product</td>
<td>Regulatory framework</td>
</tr>
<tr>
<td>Grid interface & BEMS</td>
<td>Testing needs</td>
</tr>
<tr>
<td>Testing. Simulation.</td>
<td>Indoor & outdoor testing</td>
</tr>
<tr>
<td>Demo building</td>
<td></td>
</tr>
<tr>
<td>C-Si products manufacturer</td>
<td>Demo installations management</td>
</tr>
<tr>
<td>Architectural integration</td>
<td>Demo building</td>
</tr>
<tr>
<td>Architectural integration</td>
<td>Demo building</td>
</tr>
<tr>
<td>Simulation. Monitoring.</td>
<td></td>
</tr>
<tr>
<td>Fresnel lenses</td>
<td>Exploitation manager.</td>
</tr>
<tr>
<td>Testing, LCA</td>
<td>Business models, IPR...</td>
</tr>
<tr>
<td>Thin film products manufacturer</td>
<td>BIPV software development & training</td>
</tr>
<tr>
<td>Demo buildings</td>
<td></td>
</tr>
<tr>
<td>Curved glass</td>
<td>Dissemination & Communication manager</td>
</tr>
<tr>
<td>Demo building</td>
<td></td>
</tr>
</tbody>
</table>
International collaboration

<table>
<thead>
<tr>
<th>Market analysis</th>
<th>Spec, design</th>
<th>Software development</th>
<th>Module & components manufacturing</th>
<th>Energy conversion & management</th>
<th>Testing, Demonstration activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life cycle analysis (CTCV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissemination and communication (WIP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All | All | All | All | All | All
International collaboration

PVSITES External Advisory Board

• Mr. Michiel Ritzen (Zuyd University of Applied Sciences, NL)
• Dr. David Moser (Eurac, IT)
• Mr. Emiliano Perezagua (PV Consulting Services, ES)
• Mr. Jan Clyncke (PVCYCLE, BE)
• Arch. Dr. Ing. Emmanuel Dufrasnes (École Nationale Supérieure d’Architecture de Strasbourg, FR)
• Mr. Robert Hecker (Ed Züblin AG, GE)
Market challenges

Enhanced flexibility of design, outstanding aesthetical value, multifunctionality and cost-effectiveness

Assistance to design phase through the joint simulation of BIPV products and building energy performance

More predictable, manageable, grid-friendly and profitable BIPV generation

Demonstration of reliability of BIPV solutions through effective incorporation onto real buildings
Implementation

1. Establishing the needs
 - WP1. Business case definition (R2M)
 - WP2. From market and legal requirements to system specifications (Bears Holding)

2. Progress from TRL5 to TRL6
 - WP3. BIPV modules based on crystalline silicon technology (Onyx Solar)
 - WP4. BIPV modules based on CIGS technology (Flisom)
 - WP5. Advanced grid interface for BIPV systems (CEA)
 - WP6. Building Energy Management System for different building uses (Tecnalia)
 - WP7. BIPV software tool (CADCAMation)

3. Progress from TRL6 to TRL7
 - WP8. Large scale demonstration and assessment of BIPV systems in real building installations (Acciona)
 - WP10. Management (Tecnalia)
Objectives:

• To set the foundation for effective development & exploitation
• Characterising markets, stakeholders and needs
• Understanding regulatory framework & standardisation needs
• Assessing features of exploitable results
• Managing, protecting and finding agreements on results
• Identifying appropriate business models & setting commercialisation plans
• Characterising different risks and identifying solutions to mitigate
Implementation – WP1

29 exploitable products and services identified!
16 products / 6 services / 7 knowledge and IP
Survey on BIPV market and stakeholder analysis

www.pvsites.eu
Objectives:

• To develop complete **technical specifications** attending to business models, market and legal requirements.
• To incorporate **bio-climatic** requirements and **energy-efficiency** considerations, as well as **aesthetical** considerations.
• To define structure, contents and operational protocols of a multi-format **portfolio** gathering all the information generated on the products.
Objectives:

- To provide a multiple answer to the market needs of c-Si technology-based products (semitransparent and opaque glass-glass)
- Enhanced aesthetical appearance, high efficiency levels, passive properties than traditional construction products
- Customization (geometry and formats)
- Compliance with targeted cost-effectiveness: **Target price:** 250-400 €/m² maximum (deviation of materials parity of approx. 100 €/m²); **Payback Time:** 5-7 years
Implementation – WP3
Implementation – WP3

+ Glass-glass modules with back-contact solar cells

+ Coating treatments for enhanced passive performance
Implementation – WP3

CEA-Acciona outdoor test sites
Implementation – WP4

Objectives

- Demonstration of BIPV products based on lightweight, flexible, monolithically connected CIGS solar modules on polymer films produced with roll-to-roll manufacturing methods.
- Solar roof tiles and façade elements with 10%-14% module efficiency modules integrated on metal sheets using cost effective encapsulation/lamination/bonding materials and processes.
- Large area BIPV elements on metal sheets and roofing membranes of different sizes, up to 3m², for integration in roofs and façades.
- Curved glass-glass encapsulation of CIGS modules
- Compliance with standards
- **Target cost:** 200-350 €/m2 by 2018, 100-150 €/m2 by 2021. **Payback time** 5 to 7 years.
Implementation – WP4

- Residential BIPV roof tiles
- Industrial BIPV metal roofing
- Commercial BIPV façade
Implementation – WP4

Curved glass-glass laminated CIGS modules
Objectives:

- Definition, progress and validation of interface of the BIPV generators with the grid.
- For the integration of electrical storage systems, selection of best candidates for integration into BIPV systems. A design solution which integrates the storage system on DC level will be developed.
- For the reduction of costs and increasing the flexibility in system design, a novel low cost robust PV inverter will be developed, based in SiC technology.
Implementation – WP4

NEST experimental building - Switzerland
Implementation – WP6

Objectives:

- **Simulation tool** for sizing **PV storage systems** and estimating their ROI.
- **Analysis and characterization of manageable electrical loads** in buildings for active load management.
- Refinement of **low-cost and reliable** BIPV generation and electrical consumption **forecasting tools**.
- Progress on **building energy management strategies** to maximize BIPV value.
Implementation – WP7

Objectives:

- To develop an integrated, holistic and user-friendly software tool in order to predict both BIPV products and building energy performance in real operation conditions.
- To develop BIM objects for each of the products proposed in PVSITES project.
- To validate software from data coming from the experimental buildings and test benches (WP3 and WP4) and BIPV products demonstration in real buildings (WP8).
Implementation – WP7

Glazing configurator

Module configurator

Wiring configurator

Inverter configurator
Implementation – WP7
Implementation – WP7
Implementation – WP7
Objectives:

- To evaluate BIPV elements **energy production, building energy performance** in conjunction with economic viability and associated business models; TRL 7.
- To produce **high-quality monitoring results**, for the validation of the SW tool.
- To provide a privileged frame for in situ training activities towards designers, construction companies, installers, etc.
Implementation – WP8

6 demonstration installations across Europe (BE, ES (2), CH (2), FR)
Implementation – WP8

FD2 demo building, CIGS roofing shingles, (Belgium)
Implementation – WP8

Tecnalia demo building, ventilated façade, back-contact cells (Spain)
Implementation – WP8

Circursa demo building, industrial roof CIGS elements, (Spain)
Implementation – WP8

Flisom demo building, carport, CIGS elements (Switzerland)
Implementation – WP8

Flisom demo building, industrial façade, CIGS elements, (Switzerland)
Implementation – WP8

Vilogia demo building, ventilated façade, opaque c-Si, (France)
Objectives:

- To identify target groups, communication tools and distribution channels for the project dissemination and communication activities.
- To promote BIPV as a reliable technology to the market.
- To disseminate a portfolio of BIPV systems and their potential.
- To engage the BIPV community into adopting PVSITES products.
- To guarantee that the results from the project will be accessible for knowledge transfer and capacity building.
Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 691768

PVSITES team
Thanks for the attention